⏳ Quick Start¢

1. Create segmentation model

Segmentation model is just a PyTorch nn.Module, which can be created as easy as:

import segmentation_models_pytorch as smp

model = smp.Unet(
    encoder_name="resnet34",        # choose encoder, e.g. mobilenet_v2 or efficientnet-b7
    encoder_weights="imagenet",     # use `imagenet` pre-trained weights for encoder initialization
    in_channels=1,                  # model input channels (1 for gray-scale images, 3 for RGB, etc.)
    classes=3,                      # model output channels (number of classes in your dataset)
  • see table with available model architectures

  • see table with avaliable encoders and its corresponding weights

2. Configure data preprocessing

All encoders have pretrained weights. Preparing your data the same way as during weights pre-training may give your better results (higher metric score and faster convergence). But it is relevant only for 1-2-3-channels images and not necessary in case you train the whole model, not only decoder.

from segmentation_models_pytorch.encoders import get_preprocessing_fn

preprocess_input = get_preprocessing_fn('resnet18', pretrained='imagenet')

3. Congratulations! πŸŽ‰

You are done! Now you can train your model with your favorite framework!